cupyx.scipy.signal.windows.general_gaussian#
- cupyx.scipy.signal.windows.general_gaussian(M, p, sig, sym=True)[source]#
返回一个具有广义高斯形状的窗口。
- 参数:
- 返回值:
w – 窗口数组,最大值归一化为 1(尽管如果 M 为偶数且 sym 为 True,则值 1 不会出现)。
- 返回值类型:
备注
广义高斯窗口定义为
\[w(n) = e^{ -\frac{1}{2}\left|\frac{n}{\sigma}\right|^{2p} }\]半功率点位于
\[(2 \log(2))^{1/(2 p)} \sigma\]示例
绘制窗口及其频率响应
>>> import cupyx.scipy.signal.windows >>> import cupy as cp >>> from cupy.fft import fft, fftshift >>> import matplotlib.pyplot as plt
>>> window = cupyx.scipy.signal.windows.general_gaussian(51, p=1.5, sig=7) >>> plt.plot(cupy.asnumpy(window)) >>> plt.title(r"Generalized Gaussian window (p=1.5, $\sigma$=7)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample")
>>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = cupy.linspace(-0.5, 0.5, len(A)) >>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max()))) >>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response)) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title(r"Freq. resp. of the gen. Gaussian " ... r"window (p=1.5, $\sigma$=7)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]")