cupyx.scipy.signal.windows.exponential#
- cupyx.scipy.signal.windows.exponential(M, center=None, tau=1.0, sym=True)[源代码]#
返回一个指数(或泊松)窗。
- 参数:
- 返回值:
w – 窗函数,最大值被归一化为 1(但如果 M 是偶数且 sym 为 True,则不会出现值 1)。
- 返回类型:
注释
指数窗的定义为
\[w(n) = e^{-|n-center| / \tau}\]参考文献
S. Gade and H. Herlufsen, “Windows to FFT analysis (Part I)”, Technical Review 3, Bruel & Kjaer, 1987.
示例
绘制对称窗及其频率响应
>>> import cupyx.scipy.signal.windows >>> import cupy as cp >>> from cupy.fft import fft, fftshift >>> import matplotlib.pyplot as plt
>>> M = 51 >>> tau = 3.0 >>> window = cupyx.scipy.signal.windows.exponential(M, tau=tau) >>> plt.plot(cupy.asnumpy(window)) >>> plt.title("Exponential Window (tau=3.0)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample")
>>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = cupy.linspace(-0.5, 0.5, len(A)) >>> response = 20 * cupy.log10(cupy.abs(fftshift(A / cupy.abs(A).max()))) >>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response)) >>> plt.axis([-0.5, 0.5, -35, 0]) >>> plt.title("Frequency response of the Exponential window (tau=3.0)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]")
此函数也可以生成非对称窗
>>> tau2 = -(M-1) / np.log(0.01) >>> window2 = cupyx.scipy.signal.windows.exponential(M, 0, tau2, False) >>> plt.figure() >>> plt.plot(cupy.asnumpy(window2)) >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample")