cupyx.scipy.signal.windows.general_cosine#
- cupyx.scipy.signal.windows.general_cosine(M, a, sym=True)[source]#
余弦项加权和的通用窗函数
- 参数:
说明
参考文献
示例
Heinzel 在参考文献 [2] 中描述了一个名为“HFT90D”的平顶窗函数,其公式为:
\[w_j = 1 - 1.942604 \cos(z) + 1.340318 \cos(2z) - 0.440811 \cos(3z) + 0.043097 \cos(4z)\]其中
\[z = \frac{2 \pi j}{N}, j = 0...N - 1\]由于这使用了从原点开始的约定,为了重现此窗函数,我们需要将每个其他系数转换为正数
>>> HFT90D = [1, 1.942604, 1.340318, 0.440811, 0.043097]
该论文指出,最高旁瓣位于 -90.2 dB。通过绘制窗函数及其频率响应来重现图 42,并以红色确认旁瓣电平。
>>> from cupyx.scipy.signal.windows import general_cosine >>> from cupy.fft import fft, fftshift >>> import cupy >>> import matplotlib.pyplot as plt
>>> window = general_cosine(1000, HFT90D, sym=False) >>> plt.plot(cupy.asnumpy(window)) >>> plt.title("HFT90D window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample")
>>> plt.figure() >>> A = fft(window, 10000) / (len(window)/2.0) >>> freq = cupy.linspace(-0.5, 0.5, len(A)) >>> response = cupy.abs(fftshift(A / cupy.abs(A).max())) >>> response = 20 * cupy.log10(cupy.maximum(response, 1e-10)) >>> plt.plot(cupy.asnumpy(freq), cupy.asnumpy(response)) >>> plt.axis([-50/1000, 50/1000, -140, 0]) >>> plt.title("Frequency response of the HFT90D window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") >>> plt.axhline(-90.2, color='red') >>> plt.show()